Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chromatogr A ; 1633: 461612, 2020 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-33130421

RESUMO

A sensitive multiresidue method was developed to quantify 35 pharmaceuticals and 28 metabolites/transformation products (TPs) in fish liver, fish fillet and fish plasma via LC-MS/MS. The method was designed to cover a broad range of substance polarities. This objective was realized by using non-discriminating sample clean-ups including separation technique based on size exclusion, namely restricted access media (RAM) chromatography. This universal clean-up allows for an easy integration of further organic micropollutants into the analytical method. Limits of quantification (LOQ) ranged from 0.05 to 5.5 ng/mL in fish plasma, from 0.1 to 19 ng/g d.w. (dry weight) in fish fillet and from 0.46 to 48 ng/g d.w. in fish liver. The method was applied for the analysis of fillets and livers of breams from the rivers Rhine and Saar, the Teltow Canal as well as carps kept in fish monitoring ponds fed by effluent from municipal wastewater treatment plants. This allowed for the first detection of 17 analytes including 10 metabolites/TPs such as gabapentin lactam and norlidocaine in fish tissues. These results highlight the importance of including metabolites and transformation products of pharmaceuticals in fish monitoring campaigns and further investigating their potential effects.


Assuntos
Cromatografia Líquida , Resíduos de Drogas/análise , Monitoramento Ambiental/métodos , Peixes , Análise de Alimentos/métodos , Rios/química , Espectrometria de Massas em Tandem , Animais , Peixes/metabolismo , Limite de Detecção , Extração em Fase Sólida , Águas Residuárias/análise , Poluentes Químicos da Água/análise
2.
Sci Total Environ ; 740: 139905, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-32563868

RESUMO

Prevalent findings of anticoagulant rodenticide (AR) residues in liver tissue of freshwater fish recently emphasized the existence of aquatic exposure pathways. Thus, a comprehensive wastewater treatment plant and surface water monitoring campaign was conducted at two urban catchments in Germany in 2018 and 2019 to investigate potential emission sources of ARs into the aquatic environment. Over several months, the occurrence and fate of all eight ARs authorized in the European Union as well as two pharmaceutical anticoagulants was monitored in a variety of aqueous, solid, and biological environmental matrices during and after widespread sewer baiting with AR-containing bait. As a result, sewer baiting in combined sewer systems, besides outdoor rodent control at the surface, was identified as a substantial contributor of these biocidal active ingredients in the aquatic environment. In conjunction with heavy or prolonged precipitation during bait application in combined sewer systems, a direct link between sewer baiting and AR residues in wastewater treatment plant influent, effluent, and the liver of freshwater fish was established. Moreover, study results confirmed insufficient removal of anticoagulants during conventional wastewater treatment and thus indirect exposure of aquatic organisms in receiving streams via tertiary treated effluents and combined sewer overflows. Nevertheless, further research is required to determine the ecological implications and risks for aquatic organisms as well as fish-eating predators from chronic AR exposure at environmentally relevant concentrations.


Assuntos
Rodenticidas , Animais , Anticoagulantes , Monitoramento Ambiental , Alemanha , Controle de Roedores , Águas Residuárias
3.
Water Res ; 167: 115090, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31553930

RESUMO

The recent emergence of second-generation anticoagulant rodenticides (AR) in the aquatic environment emphasizes the relevance and impact of aquatic exposure pathways during rodent control. Pest control in municipal sewer systems of urban and suburban areas is thought to be an important emission pathway for AR to reach wastewater and municipal wastewater treatment plants (WWTP), respectively. To circumstantiate that AR will enter streams via effluent discharges and bioaccumulate in aquatic organisms despite very low predicted environmental emissions, we conducted a retrospective biological monitoring of fish tissue samples from different WWTP fish monitoring ponds exclusively fed by municipal effluents in Bavaria, Germany. At the same time, information about rodent control in associated sewer systems was collected by telephone survey to assess relationships between sewer baiting and rodenticide residues in fish. In addition, mussel and fish tissue samples from several Bavarian surface waters with different effluent impact were analyzed to evaluate the prevalence of anticoagulants in indigenous aquatic organisms. Hepatic AR residues were detected at 12 out of 25 WWTP sampling sites in the low µg/kg range, thereof six sites with one or more second-generation AR (i.e., brodifacoum, difenacoum, bromadiolone). 14 of 18 surveyed sites confirmed sewer baiting with AR and detected hepatic residues matched the reported active ingredients used for sewer baiting at six sites. Furthermore, second-generation AR were detected in more than 80% of fish liver samples from investigated Bavarian streams. Highest total hepatic AR concentrations in these fish were 9.1 and 8.5 µg/kg wet weight, respectively and were observed at two riverine sampling sites characterized by close proximity to upstream WWTP outfalls. No anticoagulant residues were found in fish liver samples from two lakes without known influences of effluent discharges. The findings of our study clearly show incomplete removal of anticoagulants during conventional wastewater treatment and confirm exposure of aquatic organisms via municipal effluents. Based on the demonstrated temporal and spatial coherence between sewer baiting and hepatic AR residues in effluent-exposed fish, sewer baiting in combined sewer systems contributes to the release of active ingredients into the aquatic environment.


Assuntos
Rodenticidas , Poluentes Químicos da Água , Animais , Anticoagulantes , Monitoramento Ambiental , Alemanha , Estudos Retrospectivos , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...